The almost Gorenstein Rees algebras of socle ideals

### Shiro Goto, Naoyuki Matsuoka, Naoki Taniguchi, and Ken–ichi Yoshida

The 37th Japan Symposium on Commutative Algebra

November 20, 2015

### History of almost Gorenstein rings

- [Barucci–Fröberg, 1997]
  - $\cdots$  one-dimensional analytically unramified local rings
- [Goto–Matsuoka–Phuong, 2013] … one–dimensional Cohen–Macaulay local rings
- [Goto–Takahashi–T, 2015]
  - $\cdots \ \text{higer dimensional Cohen-Macaulay local/graded rings}$

### Question 1.1

When is the Rees algebra  $\mathcal{R}(I)$  of a given ideal I almost Gorenstein?

### History of almost Gorenstein rings

- [Barucci–Fröberg, 1997]
  - $\cdots$  one-dimensional analytically unramified local rings
- [Goto–Matsuoka–Phuong, 2013] … one–dimensional Cohen–Macaulay local rings
- [Goto–Takahashi–T, 2015]
  - $\cdots$  higer dimensional Cohen-Macaulay local/graded rings

### Question 1.1

When is the Rees algebra  $\mathcal{R}(I)$  of a given ideal I almost Gorenstein?

A B F A B F

- ∢ ศ⊒ ▶

### Goto-Matsuoka-T-Yoshida

- (1) The almost Gorenstein Rees algebras over two-dimensional regular local rings, preprint 2015. (arXiv:1506.06480)
- (2) The almost Gorenstein Rees algebras of parameters, preprint 2015. (arXiv:1507.02556)

In the paper (2),

- Characterized the almost Gorenstein property of  $\mathcal{R}(I)$  where I is
  - the ideal generated by a subsystem of parameters, and
  - <u>the socle ideal</u>  $(= Q : \mathfrak{m})$ .

### Goto-Matsuoka-T-Yoshida

- (1) The almost Gorenstein Rees algebras over two-dimensional regular local rings, preprint 2015. (arXiv:1506.06480)
- (2) The almost Gorenstein Rees algebras of parameters, preprint 2015. (arXiv:1507.02556)

In the paper (2),

- Characterized the almost Gorenstein property of  $\mathcal{R}(I)$  where I is
  - the ideal generated by a subsystem of parameters, and
  - the socle ideal  $(=Q:\mathfrak{m})$ .

The main result of this talk is stated as follows.

### Theorem 1.2

Let  $(R, \mathfrak{m})$  be a RLR with  $d = \dim R \ge 3$  and  $|R/\mathfrak{m}| = \infty$ . Let Q be a parameter ideal of R s.t.  $Q \ne \mathfrak{m}$ . Set  $I = Q : \mathfrak{m}$ . Then TFAE.

- (1)  $\mathcal{R}(I)$  is an almost Gorenstein graded ring.
- (2) Either  $I = \mathfrak{m}$ , or d = 3 and  $I = (x) + \mathfrak{m}^2$  for  $\exists x \in \mathfrak{m} \setminus \mathfrak{m}^2$ .

# §2 Almost Gorenstein rings

## Setting 2.1 (local rings)

- $\bullet~(R,\mathfrak{m})$  a Cohen–Macaulay local ring with  $d=\dim R$
- $\exists$  the canonical module  $K_R$
- $|R/\mathfrak{m}| = \infty$

### Definition 2.2

We say that R is an almost Gorenstein local ring, if  $\exists$  an exact sequence

$$0 \to R \to \mathcal{K}_R \to C \to 0$$

of *R*-modules such that  $\mu_R(C) = e_m^0(C)$ .

#### Consider an exact sequence

$$0 \to R \to \mathcal{K}_R \to C \to 0$$

of R-modules. If  $C\neq(0),$  then C is Cohen–Macaulay and  $\dim_R C=d-1.$ 

Set  $\overline{R} = R/[(0):_R C]$ .

Then  $\exists f_1, f_2, \ldots, f_{d-1} \in \mathfrak{m}$  s.t.  $(f_1, f_2, \ldots, f_{d-1})\overline{R}$  forms a minimal reduction of  $\overline{\mathfrak{m}} = \mathfrak{m}\overline{R}$ .

Therefore

$$e^0_{\mathfrak{m}}(C) = e^0_{\mathfrak{m}}(C) = \ell_R(C/(f_1, f_2, \dots, f_{d-1})C) \ge \ell_R(C/\mathfrak{m}C) = \mu_R(C).$$

Thus

$$\mu_R(C) = \mathbf{e}^0_{\mathfrak{m}}(C) \Longleftrightarrow \mathfrak{m}C = (f_1, f_2, \dots, f_{d-1})C.$$

Hence C is a maximally generated maximal Cohen–Macaulay  $\overline{R}$ –module in the sense of B. Ulrich (cf. [2]), which is called an Ulrich R–module.

Definition 2.2

We say that R is an almost Gorenstein local ring, if  $\exists$  an exact sequence

$$0 \to R \to \mathrm{K}_R \to C \to 0$$

of R-modules such that C = (0) or C is an Ulrich R-module.

Thus

$$\mu_R(C) = \mathbf{e}^0_{\mathfrak{m}}(C) \iff \mathfrak{m}C = (f_1, f_2, \dots, f_{d-1})C.$$

Hence C is a maximally generated maximal Cohen–Macaulay  $\overline{R}$ –module in the sense of B. Ulrich (cf. [2]), which is called an Ulrich R–module.

Definition 2.2 We say that R is an almost Gorenstein local ring, if  $\exists$  an exact sequence

$$0 \to R \to \mathcal{K}_R \to C \to 0$$

of R-modules such that C = (0) or C is an Ulrich R-module.

## Example 2.3

- $(1) \ k[[t^3,t^4,t^5]]$
- (2)  $k[[t^a, t^{a+1}, \dots, t^{2a-3}, t^{2a-1}]] \ (a \ge 4)$
- (3)  $k[[t^3, t^7, t^8]]$  (this is NOT an almost Gorenstein local ring)
- $(4) \hspace{0.1in} k[[X,Y,Z]]/(X,Y) \cap (Y,Z) \cap (Z,X)$
- $(5)\ \mbox{Non-Gorenstein}$  almost Gorenstein local ring is G–regular
- (6) 1-dimensional finite CM-representation type
- (7) 2-dimensional rational singularity

・何・ ・ヨ・ ・ヨ・ ・ヨ

9 / 37

### Example 2.4

Let  $U=k[[X_1,X_2,\ldots,X_n,Y_1,Y_2,\ldots,Y_n]]\ (n\geq 2)$  be the formal power series ring over an infinite field k and put

 $R = U/I_2(\mathbb{M})$ 

where  ${\rm I}_2(\mathbb{M})$  denotes the ideal of U generated by  $2\times 2$  minors of the matrix

$$\mathbb{M} = \begin{pmatrix} X_1 & X_2 & \cdots & X_n \\ Y_1 & Y_2 & \cdots & Y_n \end{pmatrix}.$$

Then R is almost Gorenstein with  $\dim R = n + 1$  and r(R) = n - 1.

Here r(R) stands for the Cohen–Macaulay type of R.

### Lemma 2.5

Let R be an almost Gorenstein local ring and choose an exact sequence

$$0 \to R \xrightarrow{\varphi} \mathbf{K}_R \to C \to 0$$

of *R*-modules s.t.  $\mu_R(C) = e^0_{\mathfrak{m}}(C)$ . If  $\varphi(1) \in \mathfrak{m} \operatorname{K}_R$ , then *R* is a *RLR*.

Therefore

 $\mu_R(C) = \mathbf{r}(R) - 1$ 

provided R is not a RLR.

### Corollary 2.6

Let R be an almost Gorenstein local ring but <u>not Gorenstein</u>. Choose an exact sequence

$$0 \to R \xrightarrow{\varphi} \mathbf{K}_R \to C \to 0$$

of *R*-modules s.t. *C* is an Ulrich *R*-module.

Then

$$0 \to \mathfrak{m}\varphi(1) \to \mathfrak{m} \operatorname{K}_R \to \mathfrak{m} C \to 0$$

is an exact sequence of R-modules.

Hence we get

$$\mu_R(\mathfrak{m} \operatorname{K}_R) \le \mu_R(\mathfrak{m}) + \mu_R(\mathfrak{m} C).$$

### Setting 2.7 (graded rings)

- $R = \bigoplus_{n \ge 0} R_n$  a Cohen–Macaulay graded ring with  $d = \dim R$
- $(R_0, \mathfrak{m})$  a local ring
- $\bullet \ \exists$  the graded canonical module  $\mathrm{K}_R$
- $\mathfrak{M} = \mathfrak{m}R + R_+$
- $a = a(R) := -\min\{n \in \mathbb{Z} \mid [K_R]_n \neq (0)\}$

•  $|R_0/\mathfrak{m}| = \infty$ 



### **Definition 2.8**

We say that R is an almost Gorenstein graded ring, if  $\exists$  an exact sequence

$$0 \to R \to \mathrm{K}_R(-a) \to C \to 0$$

of graded *R*-modules such that  $\mu_R(C) = e^0_{\mathfrak{M}}(C)$ .

Notice that

*R* is an almost Gorenstein graded ring ⇒ *R*<sub>M</sub> is an almost Gorenstein local ring.

### Example 2.9

Let  $R = k[X_1, X_2, ..., X_d]$   $(d \ge 1)$  be a polynomial ring over an infinite field k. Let  $n \ge 1$  be an integer.

- $R^{(n)} = k[R_n]$  is an almost Gorenstein graded ring, if  $d \leq 2$ .
- Suppose that d ≥ 3. Then R<sup>(n)</sup> is an almost Gorenstein graded ring if and only if either n | d, or d = 3 and n = 2.

### Theorem 2.10 ([Goto–Iai, 2000])

Let R be a Gorenstein local ring,  $I \subsetneq R$  an ideal of R. If  $gr_I(R)$  is an almost Gorenstein graded ring, then  $gr_I(R)$  is Gorenstein.

### Theorem 2.11 ([Goto–Takahashi–T, 2015])

Let  $(R, \mathfrak{m})$  be a Gorenstein local ring of dimension  $d \geq 3$  and Q a parameter ideal of R. Then TFAE.

(1)  $\mathcal{R}(Q)$  is an almost Gorenstein graded ring.

(2)  $Q = \mathfrak{m}$ .

# §3 Main results

In this section

- $(R, \mathfrak{m})$  a Gorenstein local ring with  $d = \dim R \ge 3$
- $|R/\mathfrak{m}| = \infty$
- I an m-primary ideal in R which contains a parameter ideal Q as a reduction (i.e.,  $\exists r \ge 0$  s.t.  $I^{r+1} = QI^r$ )
- J := Q : I
- $\mathcal{R}=\mathcal{R}(I):=R[It]\subseteq R[t]$  the Rees algebra of I
- $\mathfrak{M} := \mathfrak{m} \mathcal{R} + \mathcal{R}_+$  the unique graded maximal ideal of  $\mathcal{R}$

3

### Fact 3.1

Suppose that  $I^2 = QI$ . Then

- [Goto–Shimoda, 1979]  $\mathcal{R}$  is a Cohen–Macaulay ring.
- [Ulrich, 1996] One has

$$\mathbf{K}_{\mathcal{R}}(1) = \sum_{i=0}^{d-3} \mathcal{R} \cdot t^{i} + \mathcal{R} \cdot J t^{d-2}.$$

Note:  $a(\mathcal{R}) = -1$  and  $\dim \mathcal{R} = d + 1$ .

Let  $\mathrm{r}(\mathcal{R})$  denote the Cohen–Macaulay type of  $\mathcal{R}.$ 

Corollary 3.2 Suppose that  $I^2 = QI$ . Then  $r(\mathcal{R}) = d - 2 + \mu_R(J/I).$ 

In particular,  $\mathcal{R}$  is a Gorenstein ring  $\iff I = J$  and d = 3.

|                                              | Almost Gorenstein rings                                             | Main results                       | References    |
|----------------------------------------------|---------------------------------------------------------------------|------------------------------------|---------------|
|                                              |                                                                     |                                    |               |
| Theorem 3.3                                  |                                                                     |                                    |               |
| Suppose that $J = local ring$ .              | $\mathfrak{m}$ and $I \subseteq \mathfrak{m}^2$ . Then $\mathcal R$ | <sub>m</sub> is <u>NOT</u> an almo | st Gorenstein |
| Note that                                    |                                                                     |                                    |               |
| • $Q \subseteq \mathfrak{m}^2 \Rightarrow I$ | $^{2} = QI$                                                         |                                    |               |

• R is Gorenstein and  $J = \mathfrak{m} \Rightarrow I = Q : \mathfrak{m}$ 

### Corollary 3.4

Let Q be a parameter ideal of R s.t.  $Q \subseteq \mathfrak{m}^2$ . Set I = Q :  $\mathfrak{m}$ . Then  $\mathcal{R}_{\mathfrak{M}}$  is <u>NOT</u> an almost Gorenstein local ring.

Hence  $\mathcal{R}(I)$  is  $\underline{\textit{NOT}}$  an almost Gorenstein graded ring.

| Introduction                    | Almost Gorenstein rings                                              | Main results              | References  |
|---------------------------------|----------------------------------------------------------------------|---------------------------|-------------|
|                                 |                                                                      |                           |             |
| Theorem 3.3                     | $m$ and $L \subset m^2$ . Then $\mathcal{D}$                         | is NOT an almost          | . Countrain |
| Suppose that $J = local ring$ . | $\mathfrak{m}$ and $I \subseteq \mathfrak{m}^2$ . Then $\mathcal{R}$ | m is <u>NOT</u> an almost | Gorenstein  |
| Note that                       |                                                                      |                           |             |

• 
$$Q \subseteq \mathfrak{m}^2 \Rightarrow I^2 = QI$$

• R is Gorenstein and  $J=\mathfrak{m} \Rightarrow I=Q:\mathfrak{m}$ 

### Corollary 3.4

Let Q be a parameter ideal of R s.t.  $Q \subseteq \mathfrak{m}^2$ . Set  $I = Q : \mathfrak{m}$ . Then  $\mathcal{R}_{\mathfrak{M}}$  is <u>NOT</u> an almost Gorenstein local ring.

Hence  $\mathcal{R}(I)$  is <u>NOT</u> an almost Gorenstein graded ring.

## Proof of Theorem 3.3.

Set  $A = \mathcal{R}_{\mathfrak{M}}$  and suppose that A is an almost Gorenstein local ring. Choose an exact sequence

$$0 \to A \xrightarrow{\varphi} \mathbf{K}_A \to C \to 0$$

of A-modules with  $C \neq (0)$  and C is an Ulrich A-module. Let  $\mathfrak{n}$  denote the maximal ideal of A and take  $f_1, f_2, \ldots, f_d \in \mathfrak{n}$  s.t.

$$\mathfrak{n}C = (f_1, f_2, \dots, f_d)C.$$

Since  $\varphi(1) \not\in \mathfrak{n} \operatorname{K}_A$ , we get

 $\mu_A(\mathfrak{n}C) \le d \cdot (r-1)$ 

where  $r = r(A) = (d - 2) + \mu_R(J/I)$ .

э

э

#### We also have

$$0 \to \mathfrak{n}\varphi(1) \to \mathfrak{n} \operatorname{K}_A \to \mathfrak{n} C \to 0$$

because  $\varphi(1) \notin \mathfrak{n} \operatorname{K}_A$ .

#### Hence

$$\mu_{\mathcal{R}}(\mathfrak{M} \operatorname{K}_{\mathcal{R}}) = \mu_{A}(\mathfrak{n} \operatorname{K}_{A}) \leq \mu_{A}(\mathfrak{n} C) + \mu_{A}(\mathfrak{n})$$
  
$$\leq d \cdot \left[ (d-2) + \mu_{R}(J/I) - 1 \right] + \left[ \mu_{R}(\mathfrak{m}) + \mu_{R}(I) \right].$$

On the other hand, we have

$$\mu_{\mathcal{R}}(\mathfrak{M} \operatorname{K}_{\mathcal{R}}) = (d-2) \cdot \mu_{R}(\mathfrak{m}) + \mu_{R}(I + \mathfrak{m}J) + \mu_{R}(IJ/I^{2}).$$

Therefore

$$\left[\mu_R(I+\mathfrak{m}J)+\mu_R(IJ/I^2)\right]-\left[\mu_R(I)+d\cdot\mu_R(J/I)\right]\leq (d-3)\cdot\left[d-\mu_R(\mathfrak{m})\right]\leq 0.$$

Thus

$$\mu_R(I + \mathfrak{m}J) + \mu_R(IJ/I^2) \le \mu_R(I) + d \cdot \mu_R(J/I).$$

Since  $J = \mathfrak{m}$ ,  $I \subseteq \mathfrak{m}^2$  and  $\mathfrak{m}I = \mathfrak{m}Q$ , we get

 $\mu_R(\mathfrak{m}^2) + \mu_R(\mathfrak{m}Q) \le \mu_R(I) + d \cdot \mu_R(\mathfrak{m})$ 

whence

$$\mu_R(\mathfrak{m}^2) \le \mu_R(I).$$

Hence

$$\binom{d+1}{2} \le \mu_R(\mathfrak{m}^2) \le \mu_R(I) = d+1$$

which is impossible, because  $d \ge 3$ .

Let me recall the main result of this talk.

### Theorem 1.2

Suppose that R is a <u>RLR</u>. Let Q be a parameter ideal of R s.t.  $Q \neq \mathfrak{m}$ . Set  $I = Q : \mathfrak{m}$ . Then TFAE.

(1)  $\mathcal{R}(I)$  is an almost Gorenstein graded ring.

(2) Either  $I = \mathfrak{m}$ , or d = 3 and  $I = (x) + \mathfrak{m}^2$  for  $\exists x \in \mathfrak{m} \setminus \mathfrak{m}^2$ .

Main results

Let us begin with the case where  $Q \nsubseteq \mathfrak{m}^2$ .

### Setting 3.5

Let  $(R, \mathfrak{m})$  be a RLR,  $d = \dim R \ge 3$ ,  $|R/\mathfrak{m}| = \infty$ ,  $\mathfrak{m} = (x_1, x_2, \ldots, x_d)$ . Let Q be a parameter ideal of R and let  $1 \le i \le d - 2$  be an integer. Suppose that

 $(x_j \mid 1 \le j \le i) \subseteq Q \subseteq (x_j \mid 1 \le j \le i) + \mathfrak{m}^2.$ 

Set

$$\mathfrak{a} = (x_j \mid 1 \le j \le i), \ \mathfrak{b} = (x_j \mid i+1 \le j \le d)$$

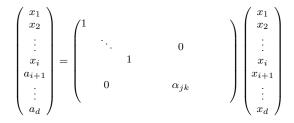
and  $I = Q : \mathfrak{m}$ .

Hence

$$Q = \mathfrak{a} + (a_j \mid i+1 \le j \le d)$$

with  $a_j \in \mathfrak{b}^2$ .

#### Therefore we have the presentation



with  $\alpha_{jk} \in \mathfrak{b}$  for  $i+1 \leq \forall j, k \leq d$ .

Let  $\Delta = \det(\alpha_{jk})$ . Then  $\Delta \in \mathfrak{b}^2$  and  $Q : \Delta = \mathfrak{m}$ , so that

 $I = Q + (\Delta).$ 

3

### **Proposition 3.6**

The following assertions hold true.

- (1)  $I^2 = QI$ .
- (2)  $Q:I=\mathfrak{m}.$
- (3)  $I \subseteq \mathfrak{a} + \mathfrak{b}^2$ .
- (4)  $\mu_R(\mathfrak{m}/I) = d i$  and hence  $\mathbf{r}(\mathcal{R}) = 2d (i+2)$ .

The following is the heart of the proof of Theorem 1.2.

### Proposition 3.7

Suppose that  $\mathcal{R}(I)$  is an almost Gorenstein graded ring. Then d = 3 and  $I = (x_1) + \mathfrak{m}^2$ .

Main results

## Proof of Proposition 3.7.

Since  $\mathbf{r}(\mathcal{R})=2d-(i+2)\geq 3,$   $\mathcal{R}$  is not Gorenstein. Take an exact sequence

$$0 \to \mathcal{R} \xrightarrow{\varphi} \mathcal{K}_{\mathcal{R}}(1) \to C \to 0$$

of graded  $\mathcal{R}$ -modules s.t.  $C \neq (0)$  and C is an Ulrich  $\mathcal{R}$ -module.

Since  $[K_{\mathcal{R}}]_1 = R$  and  $\varphi(1) \notin \mathfrak{M} \cdot [K_{\mathcal{R}}(1)]$ ,  $\varphi(1)$  is a unit of R.

Therefore

$$C \cong \left[\sum_{i=1}^{d-3} \mathcal{R} \cdot t^i + \mathcal{R} \cdot \mathfrak{m} t^{d-2}\right] / \mathcal{R}_+.$$

|                                      | Almost Gorenstein rings                                                                            | Main results | References |
|--------------------------------------|----------------------------------------------------------------------------------------------------|--------------|------------|
|                                      |                                                                                                    |              |            |
|                                      |                                                                                                    |              |            |
| Fact.                                |                                                                                                    |              |            |
| $\mu_{\mathcal{R}}(\mathfrak{M}C) =$ | $\begin{cases} \mu_R(\mathfrak{m}^2/I \cap \mathfrak{m}^2) + \mu_R(\mathfrak{m}Q/I^2) \end{cases}$ |              | (d = 3),   |

$$(d-i) + d(d-4) + \mu_R(I + \mathfrak{m}^2) + \mu_R(\mathfrak{m}Q/I^2) \quad (d \ge 4).$$

#### On the other hand, we have

$$\mu_{\mathcal{R}_{\mathfrak{M}}}(C_{\mathfrak{M}}) = \mathbf{r}(\mathcal{R}) - 1 = 2d - (i+3).$$

Consequently

$$\mu_{\mathcal{R}}(\mathfrak{M}C) = \mu_{\mathcal{R}_{\mathfrak{M}}}(\mathfrak{M}C_{\mathfrak{M}}) \le d \cdot \left(2d - (i+3)\right),$$

because  $C_{\mathfrak{M}}$  is an Ulrich  $\mathcal{R}_{\mathfrak{M}}$ -module of dimension d.

#### Suppose that $d \ge 4$ . Then we have

$$(d-i) + d(d-4) + \mu_R(I + \mathfrak{m}^2) + d(d-i) \le d(2d - (i+3)),$$

and hence

$$\mu_R(I + \mathfrak{m}^2) \le i$$

which is impossible, because  $\mu_R(I + \mathfrak{m}^2) = i + \binom{d-i+1}{2} > i$ .

Therefore d = 3 and i = 1, whence

$$\mu_R(\mathfrak{m}^2/[I \cap \mathfrak{m}^2]) + \mu_R(\mathfrak{m}Q/I^2) \le 6,$$

so that we have

$$\mathfrak{m}^2 = I \cap \mathfrak{m}^2 \subseteq I$$

because  $\mu_R(\mathfrak{m}Q/I^2) = 6$ . Hence  $I = (x_1) + \mathfrak{m}^2$ .

We need one more result to prove Theorem 1.2.

### Proposition 3.8

Let  $(R, \mathfrak{m})$  be a Gorenstein local ring with dim R = 3 and  $|R/\mathfrak{m}| = \infty$ . Let Q be a parameter ideal of R and set  $I = Q : \mathfrak{m}$ .

If  $I^2 = QI$  and  $\mathfrak{m}^2 \subseteq I$ , then  $\mathcal{R}(I)$  is an almost Gorenstein graded ring.

### Theorem 1.2

Suppose that R is a RLR. Let Q be a parameter ideal of R s.t.  $Q \neq \mathfrak{m}$ . Set  $I = Q : \mathfrak{m}$ . Then TFAE.

(1)  $\mathcal{R}(I)$  is an almost Gorenstein graded ring.

(2) Either  $I = \mathfrak{m}$ , or d = 3 and  $I = (x) + \mathfrak{m}^2$  for  $\exists x \in \mathfrak{m} \setminus \mathfrak{m}^2$ .

## Proof of Theorem 1.2.

(2)  $\Rightarrow$  (1) If  $I = \mathfrak{m}$ , then  $\mathcal{R}$  is almost Gorenstein by [Goto–Takahashi–T]. Suppose that d = 3 and  $I = (x) + \mathfrak{m}^2$  for  $\exists x \in \mathfrak{m} \setminus \mathfrak{m}^2$ . Since  $\mathfrak{m}^2 \subseteq I$  and  $I^2 = QI$ ,  $\mathcal{R}$  is an almost Goreinstein graded ring.

 $(1) \Rightarrow (2)$  We have  $Q \not\subseteq \mathfrak{m}^2.$  If  $\displaystyle Q = \overline{Q},$  then

 $Q = (x_1, x_2, \dots, x_{d-1}, x_d^q)$ 

for  $\exists$  regular system  $\{x_i\}_{1 \le i \le d}$  of parameters of R and for  $\exists q > 1$ . Therefore

$$I = Q : \mathfrak{m} = Q : x_d = (x_1, x_2, \dots, x_{d-1}, x_d^{q-1})$$

which implies q = 2 and  $I = \mathfrak{m}$ . Suppose that  $Q \neq \overline{Q}$ . Let  $\{x_j\}_{1 \leq j \leq d}$  be a regular sop of R and choose the integer  $1 \leq i \leq d-2$  s.t.

$$(x_j \mid 1 \le j \le i) \subseteq Q \subseteq (x_j \mid 1 \le j \le i) + \mathfrak{m}^2.$$

Then d = 3 and  $I = (x_1) + \mathfrak{m}^2$ .

Let us note one example.

### Example 3.9

Let R = k[[x, y, z]] be the formal power series ring over an infinite field k. We set  $\mathfrak{m} = (x, y, z)$ ,  $Q = (x, y^2, z^n)$  with  $n \ge 2$ , and  $I = Q : \mathfrak{m}$ .

Then 
$$I = (x, y^2, yz^{n-1}, z^n)$$
 and  $I^2 = QI$ .

(1) If n = 2, then  $I = (x) + \mathfrak{m}^2$ , so that  $\mathcal{R}(I)$  is an almost Gorenstein graded ring.

(2) Suppose that  $n \geq 3$ . Then  $I \neq \mathfrak{m}$ ,  $Q \neq \mathfrak{m}$ , and

$$I \neq (f) + \mathfrak{m}^2$$

for any  $f \in \mathfrak{m} \setminus \mathfrak{m}^2$ . Hence  $\mathcal{R}(I)$  is <u>NOT</u> an almost Gorenstein graded ring.

34 / 37

The end of this talk, let us consider the case where  $\dim R = 2$ . For each ideal I of R, we set

$$o(I) = \sup\{n \ge 0 \mid I \subseteq \mathfrak{m}^n\}.$$

### Theorem 3.10

Let  $(R, \mathfrak{m})$  be a RLR with dim R = 2, and  $|R/\mathfrak{m}| = \infty$ . Let Q be a parameter ideal of R s.t.  $Q \neq \mathfrak{m}$ . Set  $I = Q : \mathfrak{m}$ . Then TFAE.

(1)  $\mathcal{R}(I)$  is an almost Gorenstein graded ring.

(2)  $o(Q) \le 2$ .

### Thank you so much for your attention.

Naoki Taniguchi (Meiji University) The almost Gorenstein Rees algebras November 20, 2015 36 / 37

## References

- V. Barucci and R. Fröberg, One-dimensional almost Gorenstein rings, J. Algebra, 188 (1997), no. 2, 418–442.
- [2] J. P. Brennan, J. Herzog and B. Ulrich, Maximally generated maximal Cohen-Macaulay modules, *Math. Scand.*, 61 (1987), no. 2, 181–203.
- [3] S. Goto and S.-i. Iai, Embeddings of certain graded rings into their canonical modules, J. Algebra, 228 (2000), no. 1, 377–396.
- [4] S. Goto, N. Matsuoka and T. T. Phuong, Almost Gorenstein rings, J. Algebra, 379 (2013), 355–381.
- S. Goto and Y. Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (Fairfax, Va., 1979), 201–231, Lecture Notes in Pure and Appl. Math., 68, Dekker, New York, 1982.
- [6] S. Goto, R. Takahashi and N. Taniguchi, Almost Gorenstein rings towards a theory of higher dimension, J. Pure Appl. Algebra, 219 (2015), 2666–2712.
- [7] R. Takahashi, On G-regular local rings, Comm. Algebra, **36** (2008), no. 12, 4472–4491.
- [8] B. Ulrich, Ideals having the expected reduction number, Amer. J. Math., 118 (1996), no. 1, 17–38.

Naoki Taniguchi (Meiji University) The almost Gorenstein Rees algebras November 20, 2015 37 / 37